Inéquations

I) Résolution algébrique d'inéquations :

Rappel: Une inéquation est une inégalité qui contient une inconnue x.

Résoudre une inéquation, c'est trouver toutes les valeurs de x qui vérifient cette inégalité. Il s'agit d'un ensemble de nombres.

1) Inéquations équivalentes :

<u>Définition</u>: On dit que deux équations sont équivalentes ssi elles ont le même ensemble de solutions.

En utilisant la propriété suivante, on obtient des inéquations équivalente :

Propriété:

- On ne change pas l'ordre d'une inégalité quand on ajoute ou soustrait le même nombre aux deux membres d'une inégalité.
- On ne change pas l'ordre d'une inégalité quand on multiplie ou divise les deux membres d'une inégalité par un même nombre POSITIF, non nul.
- On change l'ordre d'une inégalité quand on multiplie ou divise les deux membres d'une inégalité par un même nombre **NEGATIF**, non nul.

2) Inéquations du premier degré :

Exemples:

Résoudre les inéquations suivantes et représenter les solutions sur une droite graduée :

2)
$$-2x+3<0$$

1) Correction:

Les solutions sont tous les nombres strictement inférieurs à

L'ensemble des solutions de l'inéquation est donc tous les nombres de l'intervalle :

On note:
$$S = \{x \in J\}$$

$$-2x + 3 < 0 On soustrait 3.$$

$$<=> -2x < -3$$

$$<=> x > $\frac{-3}{-2}$ On divise par (-2).
$$<=> x > \frac{3}{2}$$
 On simplifie.$$

Les solutions sont tous les nombres strictementà

L'ensemble des solutions de l'inéquation est donc tous les nombres de l'intervalle : []

On note:
$$S = \{x \in J\}$$
;

3) Inéquations du second degré :

Méthode : Pour résoudre une inéquation de degré supérieur ou égal à deux :

- on transpose pour obtenir l'un des deux membres égal à 0.
- on factorise le membre qui n'est pas 0.
- on étudie le signe de chaque facteur.
- on utilise un tableau de signe pour étudier le signe du produit.
- on trouve les solutions en utilisant la dernière ligne du tableau.

Résoudre dans \mathbb{R} l'inéquation suivante : (3-6x)(x+2)<0

Le signe de (3-6x)(x+2) dépend du signe de chaque facteur (3-6x) et (x+2). On résout par exemple :

$$3-6x > 0$$
 (+) et $x + 2 < 0$ (-)
 $<=> -6x > -3$ $<=> x < -2$ (-)
 $<=> 6x < 3$ $<=> x < 1/2$

On résume cela dans un même tableau de signes.

x	-∞		-2		$\frac{1}{2}$		+∞
3 – 6 <i>x</i>		+		+	0	-	
x + 2		-	0	+		+	
(3-6x)(x+2)		-	0	+	0	-	

On obtient la dernière ligne (le produit) en appliquant la règle des signes.

On en déduit que (3-6x)(x+2) est positif pour tout $x \in]-2; \frac{1}{2}[$ et

négatif pour
$$x \in]-\infty; -2[\cup]\frac{1}{2}; +\infty[$$
.

L'ensemble des solutions de l'inéquation est donc : $\{x \in]-\infty; -2[\cup]\frac{1}{2}; +\infty[\}$

4) Inéquation quotient :

Méthode: Résoudre une inéquation en étudiant le signe d'un quotient

Résoudre dans IR l'inéquation suivante : .

L'équation n'est pas définie pour 3x - 2 = 0, soit x = .

Il faudra éventuellement exclure cette valeur de l'ensemble des solutions.

Le signe de dépend du signe des expressions et.

2-6x=0 équivaut à x=.

Résumons dans un même tableau de signes les résultats pour les deux expressions.

x	-∞		$\frac{1}{3}$		$\frac{2}{3}$	+∞
2 - 6x		+	0	-		-
3x - 2		-		-	0	+
$\frac{2-6x}{3x-2}$		-	0	+		-

La double-barre dans le tableau signifie que le quotient n'est pas défini pour x =.

On en déduit que pour.

L'ensemble des solutions de l'inéquation est ..

II) Vérification à l'aide d'une résolution graphique. Méthode :

- On trace les courbes des fonctions.
- Résoudre une inéquation en étudiant le signe d'un quotient