I - Suites arithmétiques

1. Définition et propriétes de base

<u>Définition</u> La suite $(u_n)_{n\in\mathbb{N}}$ est arithmétique si et seulement si il existe $r\in\mathbb{R}$ tel que pour tout $n\in\mathbb{N}$, $u_{n+1}=u_n+r\iff u_{n+1}-u_n=r.$ r est appelée la **raison** de la suite.

<u>Remarque</u>: On dit que l'on passe d'un terme au terme suivant en ajoutant toujours le même nombre. Exemple:

- a) Soit la suite (u_n) définie par $u_0 = 0$ et pour tout entier n par la relation $u_{n+1} = u_n + 1$. Alors, $u_1 = \ldots, u_2 = \ldots, u_3 = \ldots$. (u_n) est une suite arithmétique de raison $r = \ldots$.
- b) Soit (v_n) la suite définie par la relation $v_n = 5n + 2$.

Alors, pour tout entier n, $v_{n+1} - v_n = \dots$

On en déduit que (v_n) est une suite arithmétique de raison $r = \dots$

c) La suite (w_n) définie par la relation $w_n = n^2 + 2$ est-elle arithmétique?

Propriété

(Admise) Soit (u_n) une suite arithmétique de premier terme u_0 et de raison r, alors, pour tout entier n, $u_n = u_0 + nr$.

Remarque:

si la suite commence au rang 1 et non au rang 0, alors on a : pour tout entier $n \in \mathbb{N}^*$, $u_n = u_1 + (n-1)r$. De manière générale, on a :

Propriété

(Admise) Soit (u_n) une suite arithmétique de raison r, alors, quels que soient les entiers q et p, $u_q = u_p + (q - p)r$.

Exemple:

- 1) Soit la suite arithmétique (u_n) de premier terme $u_0 = -5$ et de raison r = 2. Calculer u_{3002} .
- 2) Soit la suite arithmétique (v_n) de premier terme $v_2 = 1200$ et de raison r = -10. Calculer v_{25} . A partir de quel rang la suite est-elle négative?
- 3) Soit (u_n) une suite arithmétique telle que $u_{10} = -70$ et $u_{25} = 80$. Calculer la raison r de cette suite, puis calculer u_0 et u_{1212} .

Propriété

Soit (u_n) une suite arithmétique de premier terme u_0 et de raison r, alors,

- si r > 0, $alors (u_n)$ est croissante
- $si \ r = 0$, $alors (u_n)$ est constante
- $si \ r < 0$, $alors (u_n)$ est décroissante

2.	Somme	\mathbf{des}	termes	d'une	suite	arithmétiq	ue
----	-------	----------------	--------	-------	-------	------------	----

Soit $(u_n)_n \in \mathbb{N}$ une suite, on cherche à calculer la somme des termes $S_n = u_0 + u_1 + u_2 + \dots + u_{n-1} + u_n$. Cette somme contient : _______ termes.

Soit $(u_n)_n \in \mathbb{N}^*$ une suite ou la somme des termes : $S_n = u_1 + u_2 + \cdots + u_{n-1} + u_n$.

Cette somme contient : ______ termes.

Propriété La somme des n premiers entiers naturels est : $S_n = 1 + 2 + 3 + \cdots + n = \frac{n(n+1)}{2}$. Démonstration :

$$S_n = 1 + 2 + 3 + \dots + n-2 + n-1 + n$$

 $S_n = n + n-1 + n-2 + \dots + 3 + 2 + 1$
 $2S_n = (n+1) + (n+1) + (n+1) + \dots + (n+1) + (n+1) + (n+1)$

La somme contient ... termes, et donc on trouve ainsi, $2S_n = \ldots$, soit $S_n = \ldots$

Propriété (.

(Admise)

La somme des termes consécutifs d'une suite arithmétique est égale au produit du nombre de termes par la moyenne des termes extrêmes :

$$S_n = (n+1)\frac{u_0 + u_n}{2}$$

$$S_n = (\text{nombre de termes}) \frac{(1er\ terme\ de\ la\ somme) + (dernier\ terme\ de\ la\ somme)}{2}$$

 ${\bf Exemple:}$

II - Suites géométriques

1. définition et propriétes de base

<u>Définition</u> Une suite géométrique est une suite dont chaque terme est obtenu en multipliant par la même quantité q , appelée raison de la suite, le terme précédent.

Il existe $q \in \mathbb{R}$ tel que pour tout entier n, $u_{n+1} = q \times u_n$

Si on a prouvé au préalable que pour tout $n \in \mathbb{N}$, $u_n \neq 0$ alors on peut utiliser : $\frac{u_{n+1}}{u_n} = q$

Exemples : • La suite de nombres 1, 2, 4, 8, 16, 32, ...des puissances successives de 2 est la suite géométrique de raison q = 2 et de premier terme $u_0 = 1$.

- la suite (v_n) de terme général $v_n = (-1)^n$, pour laquelle $v_0 = 1$, $v_1 = -1$, $v_2 = 1$, $v_3 = -1$, ...est la suite géométrique de premier terme $v_0 = 1$ et de raison q = -1.
- Soit la suite (w_n) définie par la relation $w_n = 2 \times 3^n$.

Alors, pour tout entier n, $\frac{v_{n+1}}{v_n} = \dots$

On en déduit que (w_n) est une suite géométrique de raison $q = \dots$

Propriété Soit (v_n) une suite géométrique de premier terme v_0 et de raison q, alors, pour tout entier $n, v_n = v_0 \times q^n$.

 $Si(v_n)$ commence à v_1 alors : pour tout $n \in \mathbb{N}$, $v_n = v_1 \times q^{n-1}$

Exemple:

- a) Soit (u_n) la suite géométrique de premier terme $u_0 = 0, 2$ et de raison $q = \frac{1}{4}$. Calculer u_4 et u_{20} .
- b) On utilise une feuille de papier, d'épaisseur e=0,5 mm, que l'on replie successivement en deux. Quelle est l'épaisseur de la feuille après le premier pliage? après le deuxième? après le $n^{\text{ème}}$? Combien de fois faudrait-il replier cette feuille en deux pour obtenir une épaisseur supérieure à la hauteur de la tour Eiffel (environ 300 m)?

Propriété Soit (u_n) une suite géométrique, dont tous les termes sont non nuls, de raison $q \neq 0$, alors, pour tous entiers m et p, $\frac{u_m}{u_n} = q^{m-p}$

2. Somme des termes d'une suite géométrique

Propriété Pour tout réel $q \neq 1$, $1 + q + q^2 + \dots + q^n = \frac{1 - q^{n+1}}{1 - q}$. Pour q = 1, $1 + q + q^2 + \dots + q^n = 1 + 1 + 1 + \dots + 1 = n$.

Propriété La somme de n termes consécutifs d'une suite géométrique, de premier terme a et de raison q est : $a\frac{1-q^n}{1-q}$.

A retenir : cette somme = (1er terme de la somme) $\times \frac{1 - q^{nbre\ de\ termes}}{1 - q}$

Exercice 1: Soit (u_n) la suite définie par $u_0 = \frac{1}{2}$ et, pour tout entier naturel n, $u_{n+1} = \frac{u_n}{1 + 2u_n}$. On définit la suite (v_n) à partir de (u_n) par $v_n = \frac{1}{u} + 1$.

- 1) Montrer que la suite (v_n) est arithmétique. Préciser son premier terme et sa raison.
- 2) Exprimer v_n en fonction de n, puis u_n en fonction de n.

Exercice 2: Soit (u_n) la suite définie par $u_0 = -1$ et, pour tout entier naturel n, $u_{n+1} = \frac{4u_n}{4 - u_n}$. On définit la suite (v_n) à partir de la suite (u_n) par la relation $v_n = \frac{3u_n + 2}{u_n}$.

- 1) Montrer que (v_n) est arithmétique.
- 2) Exprimer v_n , puis u_n , en fonction de n.

Exercice 3: (u_n) est la suite définie par $\begin{cases} u_0 = 1 \\ u_{n+1} = \frac{1}{2}u_n + \frac{1}{4} \end{cases}$, et (v_n) est définie par $v_n = u_n - \frac{1}{2}$.

- 1) Calculer v_0 , v_1 , v_2 et v_3 et conjecturer la nature de la suite (v_n) .
- 2) Prouver que la suite (v_n) est géométrique.
- 3) Exprimer v_n , puis u_n , en fonction de n.

Exercice 4: Calculer les sommes :

a)
$$S = 1 + 2 + 4 + 8 + 16 + \dots + 1024$$
 b) $P = 3 + 5 + 7 + 9 + \dots + 121$ c) $Q = 2 + \frac{1}{2} + \frac{1}{8} + \frac{1}{32}$

c)
$$Q = 2 + \frac{1}{2} + \frac{1}{8} + \frac{1}{32}$$

Exercice 5: Résoudre les équations :

a)
$$1 + x + x^2 + x^3 + \dots + x^7 = 0$$

a)
$$1 + x + x^2 + x^3 + \dots + x^7 = 0$$
 b) $\frac{1}{x} + \frac{1}{x^2} + \frac{1}{x^3} + \dots + \frac{1}{x^8} = 0$ c) $27x^7 + 9x^5 + 3x^3 + x = 0$

c)
$$27x^7 + 9x^5 + 3x^3 + x = 0$$

Exercice 6: Soit la suite (u_n) définie pour tout entier naturel n par $u_n = 3^n + 4n - 3$. On note (v_n) et (w_n) les suites définies par $v_n = 3^n$ et $w_n = 4n - 3$.

- a) Montrer que (v_n) est une suite géométrique et que (w_n) est une suite arithmétique
- b) Calculer $V_n = v_0 + v_1 + \dots + v_n$ et $W_n = w_0 + w_1 + \dots + w_n$.
- c) En déduire la somme, en fonction de n, $U_n = u_0 + u_1 + \cdots + u_n$.

Exercice 7: Soit (u_n) la suite définie par les deux premiers termes $u_0 = 1$ et $u_1 = 2$ et, pour tout entier naturel $n, u_{n+2} = 1, 5u_{n+1} - 0, 5u_n$.

- 1) a) Montrer que la suite (v_n) définie par $v_n = u_{n+1} u_n$ est géométrique.
 - b) Exprimer alors v_n en fonction de n.
- 2) a) Calculer en fonction de *n* la somme $S_n = 0, 5 + (0,5)^2 + (0,5)^3 + \cdots + (0,5)^n$.
 - b) Exprimer alors u_n en fonction de n.